
Data Location Optimization for a Self-Organized Distributed Storage System

Hannes Mühleisen, Tilman Walther and Robert Tolksdorf
Networked Information Systems Group

Freie Universität Berlin
Berlin, Germany

muehleis@inf.fu-berlin.de, tilman.walther@fu-berlin.de, tolk@ag-nbi.de

Abstract—Swarm-inspired algorithms allow the creation of
complex systems that are scalable in many dimensions, adapt-
able to changing conditions, and robust against failure. These
properties make them suitable for the challenges inherent
in distributed storage systems. However, these swarm-based
approaches reach their impressive performance by trading
away correctness guarantees, occasionally leading to misplaced
data items. In order to achieve consistent storage, there is a
need for a constant optimization of the store’s data structure. In
this paper, we describe a fully distributed and scalable heuristic
for the optimization of the location of stored data items
within a distributed storage system based on the brood sorting
method used by ants. We evaluate our heuristic using best- and
worst-case test data sets to determine whether our location
optimization method converges and whether it improves the
location and organization of data inside a large-scale storage
network.

Keywords-Self-Organization, Swarm Intelligence, Ant Colony
Optimization, Distributed Storage

I. INTRODUCTION

The principles of self-organization and swarm intelligence
can be applied to solve complex problems using very simple
actors which can perform only a very limited set of actions
with low complexity. Advantages are the independence from
central components and the distribution of the evolving
structures.

One problem of increasing complexity is the storage of
data items in distributed environments. The main technical
challenge in this area is scalability towards the amount of
data elements that can be stored inside these systems and be
retrieved from a single logical storage name space. While
early storage systems used a single mainframe computer to
save all data present in the system, federated systems were the
first approach to distribute storage items on multiple physical
computers while providing one logical data storage space.
Here, one central computer holds a data structure that can
resolve the location of a requested data item to a particular
node. The next step was the introduction of fully distributed
solutions, where central computers are not required anymore.

Adaptability to changing popularity of data items is an
important challenge for fully distributed storage systems.
For example, the Slashdot effect, where thousands of users
access a web resource simultaneously, frequently disables
even sophisticated storage architectures [1].

Therefore, a need for a fully distributed storage system
able to scale to an arbitrary number of data items and able to
adapt quickly to changing load patterns is present. We are in
the process of developing an approach capable of fulfilling
these requirements using a class of algorithms inspired by
the behaviour of ants. The basic functionality of this Self-
Organized Semantic Storage Service (S4) has already been
described and validated through evaluation in our previous
work [2]. However, as nature-inspired algorithms achieve
scalability through operations which have a small probability
of failure, we constantly work on improving our approach
in order to achieve production readiness.

In this paper, we contribute a scalable heuristic and method
for the optimization of the location of stored data items
within our distributed store. This heuristic is based on the
brood sorting method used by certain species of ants. We
describe the rationale as well as the operations of this method
in Section II. We evaluate our heuristic using best- and
worst-case test data sets in Section III to determine whether
our organization method does converge and improves the
location and organization of data inside a large-scale storage
network. Section IV gives an overview over related work
in this area. Finally, Section V concludes our findings and
gives an overview of future work.

II. ANT COLONIES IN DISTRIBUTED STORAGE

Ant Colony Optimization (ACO) is the simulation of the
behaviour of ants in order to solve problems efficiently.
Solutions emerge through the loosely coordinated actions
of large amounts of simulated individuals on a simulated
landscape. Coordination between individuals is – consistent
with nature – performed indirectly. Ants can deposit volatile
markers (pheromones) on the landscape. A deposit will be
made if an ant has encountered a solution. Markers can be
detected by other ants which are then more likely to follow
them. This represents a positive enforcement mechanism
converging on global optimal solutions [3].

The main principles for ACO are simplicity, dynamism,
and locality. Simplicity is what separates the swarm algo-
rithms from multi-agent systems: swarm members have only a
very limited capability for autonomous reasoning, their action
rules have to be simple and straightforward. Dynamism is
inherent in the landscape on which the ants move about,



pheromone paths change quickly, and items once found at a
location might not be there forever. Locality is the principle
that adds much-desired scalability to ACO: Every decision
made by the ants has to be based on strictly local knowledge.
No global mutable state of any kind has to be used in the
ants’ decisions.

First applications of ACO were performed to solve combi-
natorial problems such as the Travelling Salesman Problem
(TSP), which stands as an example for a NP-hard problem
solved efficiently using ACO [4]. For this class of problems,
all swarm individuals and their landscape can be simulated
on a single computer, and problem solutions are retrieved
from the paths that emerge from the ants’ movements.

A. Scalability in Storage Systems

The usability of a storage system is dependent on its
scalability in many cases. Whenever a very large amount
of data items is to be stored, or the amount of requests to
the store exceeds the capabilities of stand-alone systems, a
logical architectural choice is the distribution of the stored
data over several physical computers.

If comparably few data items are served to a large number
of requests, replication is the first method of choice. Here,
data items are mirrored between several physical computers,
and the requests for the stored data are distributed over the
mirrors. However, for each update to the stored data set
extensive replication operations become necessary. Also, the
amount of data items that can be handled is dependent on
the storage capacity of each single computer.

The second method is federation, where data items are
distributed over several computers. Distributed storage poses
challenges very similar to the routing problem. Data items
are placed on a number of connected nodes, and each node
is able to forward queries for the data items stored in the
entire network to the node actually managing the data item.
In federated systems, a distinguished node contains a data
structure, which gives the storage location for each stored
data item. Requests can be posed to the central node, and
then access data items on the nodes they are stored on.
However, as the amount of data items and requests increases,
the central index node is subject to failures as well, impeding
the operation of the entire system.

In a truly distributed system, no node alone is able to
determine the location of all stored data items. Instead, this
lookup is performed by a number of nodes, each contributing
a small piece of the answer. Only this class of systems
can reach a high degree of both scalability and robustness.
The scalability of ACO in solving hard problems makes the
approach a natural candidate for the determination of storage
locations in distributed systems.

B. Operations of Swarm-based Distributed Storage

We proposed a distributed data store, which achieves
scalability by using ACO-inspired algorithms to locate data

items within a network of connected computers (“nodes”).
Each node stores a subset of the data items present in
the entire system. External processes can send requests to
any node that is part of the storage network, where the
request is converted to a virtual individual, which then can
move through the storage network. These individuals take
strictly local decisions, and do not rely on any global data
structure. Efficient routing decisions are supported by virtual
pheromones, which are deposited by successful operations.
This way, virtual pheromone paths leading through the
network to the different data items are formed.

This behaviour has been classified as “Deterministic
backward ants and pheromone update” in [4]. This has a
major advantage with the possibility to remove loops from
the path taken before retracing it, usually using a variant of
Floyd’s algorithm for loop elimination from linked lists [5].
Loops are particular dangerous for ACO, since they can lead
to undue amounts of deposited pheromones.

For application in distributed systems, ACO was lifted
onto a new level: A set of computers (nodes) connected
bilaterally using network technology is now considered to
be the simulated landscape, and simulated ants are able to
pass through the connections present between nodes. The
simulation thus no longer is run on a single computer, where
results can be retrieved easily by analyzing the landscape,
but is rather part of a distributed system.

Since storage systems have to support the storage, the
retrieval, and the removal of individual data items, pheromone
values have to be differentiated between data items. For each
data item stored, a separate ACO optimization takes place.
We therefore introduced the notion of a routing key, which
describes a defining property of the stored data items later
to be used in retrieval. For example, if the storage system is
to support file storage, a file name could be the routing key.
Retrieval and deletion operations can be given the name of
the file to be retrieved, and storage operations can use the
name of the file to be stored to determine its storage location
within the network. A simple mapping function maps an
arbitrary routing key into a limited and fixed range [0, 1].
From there we can define our probabilistic routing policy
for storage operations adapted from [6]. At each node k for
each possible routing key d and all neighbor nodes n, Pnd

gives the probability that node n is chosen as the next hop
for the handling of the current storage operation.

∑
n∈Nk

Pnd = 1, d ∈ [0, 1], Nk = {neighbors(k)}.

From the perspective of ACO, the routing key hence is
the distinct value used to distinguish pheromone values. This
poses a serious problem, as the amount of distinct data
items is far larger than the amount of nodes in the network.
Hence, we have developed a method to aggregate pheromone
values into a limited amount of so-called “buckets”, which are



1

2

3

1

2

3

1

2

3

(1) (2) (3)

Figure 1. Bucket movement example

coarser entities of pheromone values [2]. Each bucket consists
of a minimum and maximum mapping value, an average
mapping value as well as an entry count. A maximum amount
of possible buckets m is defined. For each new mapped
routing key, a new bucket is created at first. Whenever the
amount of possible buckets is exceeded, buckets are merged
using a heuristic which merges closer and smaller buckets
first [2]. This concept is also used in the organization of
the data items stored on each node, because it improves the
speed of local read operations and allows bulk transfers of
data item groups as entire buckets.

The node on which a data item is stored is also a decision
of the storage system. This decision can be based on a global
law as for examples in hash-based distributed systems, where
a hash function determines the node a data item is to be
stored on. Main issues of global law data distribution are
skewed key distributions and unbalanced data popularity. For
example, if a hash function is used to determine storage
locations, the quality of the distribution is directly dependent
on the quality of the hash function and even distribution
of routing keys. If the target range of the hash function is
not used evenly, some storage nodes will have to store a
larger quantity of data items, while some nodes will not store
any data at all. Equally, if few data items are the subject of
most retrieval operations, this will lead to a very unfair load
distribution.

A more dynamic approach would be to determine the
position of (new) data items using ACO, since this concept
is not based on a global law in the aforementioned sense:
Each swarm individual is independent in its decisions, in our
case enabling the storage nodes to determine the next target
for operations entirely by themselves. This can mend the
problems of unfair data and load distribution, as the storage
location of new data items can be set to an arbitrary storage
node, with new pheromone paths forming on-demand.

C. Location Optimization by Re-Organization

An additional possibility is also the re-organization of
already stored data items in order to improve the overall
system performance. While a combinatorial solution would
have no way in computing the optimal storage locations for

all permutations of data items and storage locations, ACO
may be able to achieve just that. However, a concept to
determine the data items to be moved and the target nodes
for these movement operations has to be created. While
many forms of these concepts are conceivable, we propose
a concrete approach using a simple heuristic inspired by the
brood sorting method ants and bees use to keep their offspring
organized [7]: Ants tasked with the organization of the brood
will wander around in the nest randomly. When encountering
larvae, they will pick up the most dissimilar one. They then
carry it around the nest, and as they encounter other larvae,
their inclination to put down the carried larva increases
with its similarity to the larvae visible. This represents
a distributed clustering algorithm that has already been
successfully applied [8].

The need for storage location optimization arises from
two sources: If new data items using previously unknown
routing keys are stored they are simply placed on a random
node. Also, due to the probabilistic operations of the systems,
some storage operations do not reach the node storing data
matching its routing key. These data items then have to be
reorganized in order to be efficiently retrieved.

We have adapted the described brood sorting method to
increase the coherence of stored data in a distributed storage
system: In the method proposed in this paper, each host
periodically generates a storage profile for the local persistent
storage. This profile is then put onto a special type of ant, the
“movement ant”. The movement ant commences on a random
walk through the network. On each visited node, the storage
profile is compared to the local profile. The result of this
comparison is a set of buckets, for which larger buckets also
exist on the node where the move event originated from. This
set is sent to the node where the movement ant originated
and integrated into the data stored there.

This heuristic only increases the bucket size and decreases
the amount of clusters present. Thus, if run for sufficient time,
this process is expected to converge on an stable number of
buckets. Through the merge of redundant buckets, ambiguous
pheromone paths are made unnecessary, and the ability of
the storage system to deliver all or most data items matching
a particular query is also expected to increase. It has to be



noted that this heuristic does not require any global law, and
thus is expected to be able to scale in regard to the storage
network size.

Figure 1 gives an example for the application of the storage
location heuristic in three stages. For three nodes, their
storage profile is displayed as a graph giving the location
of the buckets on the mapping range. For each box plotted,
the left and right borders are plotted using the minimum
and maximum bucket values. The height of each box is
determined by the amount of data items stored in a bucket.
We can now observe the evaluation of our heuristic using this
(constructed) example. Panel 1 gives the original situation.
Each node stores a set of buckets, but significant overlap
exists between nodes. Panel 2 shows movement decisions:
Because a larger and overlapping bucket exists on the remote
node, a bucket is moved from node 2 to node 1, three buckets
are moved from node 2 to node 3, and one bucket is moved
from node 3 to node 2. The optimized situation is now
displayed in Panel 3: Each node contains a smaller number
of buckets, and no overlap in mapping values exists any
more.

Reconsider Panel 1: There is an obvious bucket overlap
in the leftmost bucket stored on nodes 1 and 2. If the ACO
would have to optimize a path leading from node 3 to the data
items with a routing key of 0.1 stored in these two buckets,
the probability values would have to be shared between the
two nodes, as in Pn1d0.1

= 0.6 and Pn2d0.1
= 0.4. In this

case, 40 % of retrieval operations for the routing key 0.1
arriving at node 3 would be routed to node 2, and 60% to
node 1. Either way, a significant share of data items stored
for this routing key would not be found without additional
requests or forwarding. However, for the optimized situation
in Panel 3, only one pheromone path would be necessary
for this routing key with Pn1d0.1

= 1. Now, all operations
looking for data items matching this routing key from node 3
are forwarded to node 1, where all matching data items are
stored. As shown by the example, storage optimization does
enable more efficient pheromone path calculation and thus
increases the performance of the entire storage network.

III. EVALUATION

Our evaluation is set to show both the convergence as
well as the scalability of our movement heuristic. We have
extended our implementation of an ACO-based distributed
triple store “S4” [2] to include the movement heuristic
described in Section II-C. The extended implementation was
deployed onto our testing cluster consisting of 100 virtual
Linux servers. The test protocol was designed as follows:
For storage network sizes ranging from 10 to 100 nodes, a
data set containing 100,000 data items split up into 1,000
separate write operations was written into the storage network
in four phases of 250 write operations each. After a phase
was completed, four metrics were recorded in consecutive
discrete samples:

1) Data items stored in the storage network
2) Movement operations that have successfully moved

data
3) Amount of buckets in the storage network
4) Average number of data elements per bucket in the

storage network
Sampling was continued until no successful movement
operations were recorded for 10 samples, after which the next
write phase was started. We have repeated our test protocol
for two different data sets each containing 100,000 data
items.

Two test data sets were generated for the purpose of
evaluating the movement heuristic. Since the movement
operation is relying on the bucket generation process in order
to exchange storage profiles, the amount and distribution of
possible buckets in the storage network is the main concern.
Test data sets therefore represented two extremes for the
movement heuristic. The first data set (“synthetic”) contained
only 200 distinct data identifiers that were used as input for
the routing keys. The second data set (“random”) included
a distinct data identifier for each data item, hence 100,000
data identifiers.

Our movement heuristic is expected to converge as well as
being able to optimize the synthetic data set with considerably
less effort than the random data set. To show these two
properties, two graphs have been produced for each test
run: The graph on the left shows shows the amount of data
items stored plotted against the amount of move operations
per sample. The left vertical axis gives the scale for the
amount of data items, the right vertical axis the amount of
move operations. The horizontal axis gives the samples on a
discrete scale. It should be noted that the time between each
sample is not a constant factor, as the speed of data collection
from the storage nodes depends on their processing load. The
graph on the right plots the total amount of buckets inside
the storage network against the average number of data items
stored in each bucket, with the vertical axis being equal to
the other plot.

Fig. 2 shows evaluation results for a storage network
containing 100 nodes with the synthetic data set. The four
write phases are represented by four large “steps” in the
data item plot. The peaks in movement operations coincide
closely with the increase of data items after each write phase.
Also, movement peaks decrease in intensity over the four
write phases. This is attributed to an increasingly improving
storage situation due to optimizations. This can also be
observed in the second part of the graph: Following each write
phase, the growth of the total amount of buckets is reduced.
Also, the average size of buckets is only decreased shortly
and increased again as movement operations reorganize
misplaced data items. For the synthetic data sets with its
200 distinct routing key the storage location optimization
heuristic performs very well. Results for network sizes 10-90
are not given, since they produced very similar graphs.



0 20 40 60 80 100 120

2
e
+

0
4

4
e
+

0
4

6
e
+

0
4

8
e
+

0
4

1
e
+

0
5

Sample

D
a
ta

 I
te

m
s

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

M
o
ve

 O
p
e
ra

ti
o
n
s

Data Items

Move Operations

Data Items vs. Move Operations synthetic/100nodes

0 20 40 60 80 100 120

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

Sample

T
o
ta

l 
A

m
o
u
n
t

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

A
ve

ra
g
e
 S

iz
e

Total Amount

Average Size

Bucket Amount vs. Average Size synthetic/100nodes

Figure 2. Evaluation results for 100 nodes and synthetic data set

0 50 100 150 200 250

2
0
0
0
0

4
0
0
0
0

6
0
0
0
0

8
0
0
0
0

Sample

D
a
ta

 I
te

m
s

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

M
o
ve

 O
p
e
ra

ti
o
n
s

Data Items

Move Operations

Data Items vs. Move Operations random/100nodes

0 50 100 150 200 250

2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

Sample

T
o
ta

l 
A

m
o
u
n
t

0
5
0

1
0
0

1
5
0

A
ve

ra
g
e
 S

iz
e

Total Amount

Average Size

Bucket Amount vs. Average Size random/100nodes

Figure 3. Evaluation results for 100 nodes and random data set

Result graphs for evaluation results using the random
data set are plotted in Fig. 3. Again, results for different
network sizes were too similar to be of interest. Two main
differences to the results of the synthetic data sets can be
spotted: First, the graph of the movement operations shows
spikes of a different shape. This comes as no surprise, as
a larger number of routing keys leads to a higher effort
in location optimization. However, movement operations
consistently converge, too. The second main difference is
visible in the bucket statistics graph. The decrease in average
bucket size and the increase in total bucket amount following
write phases is much more intense. This also represents an
expected behaviour and can be explained: For the synthetic
data set, additional data items are likely to be able to use an
existing pheromone trail due to the very limited number of
routing keys. For the random data set, however, each data
item has its own unique routing key, and pheromone paths
are not as likely to be present. Hence, more data items are
misplaced and have to be moved.

In conclusion, we have observed four main results of our
evaluation of the self-organized storage location optimization
heuristic:

1) Comparable results for all tested network sizes strongly
suggest the scalability of our concept to the amount

of storage nodes in a storage network.
2) We observed the convergence of the data distribution

in the storage network to a stable state following
write operations in every test run. This behaviour was
expected and is caused by the heuristic only performing
an action if bucket sizes are increased.

3) By plotting the amount of buckets against their average
size for the entire storage network, we were able to
observe a sustainable increase in bucket size. Apart
from short decreases caused by the storage of additional
data items, the average bucket size increased steadily
over the four write phases. For both data sets the
total amount of buckets did not increase linearly with
the amount of items stored; for the random data set,
additional data did even lead to less buckets than before
due to bucket merging operations. The storage location
optimization heuristic is therefore regarded to be able
to improve the data distribution for arbitrary data sets.

4) Repetition of our evaluation for two different data sets
with different amounts of routing keys enabled us to
determine the impact of the distribution of routing
keys in regard to the amount of elements stored. While
the storage location optimization heuristic required
considerably more move operations for the data set



with 100,000 routing keys, convergence and successful
data reorganization was not hampered by this worst-
case data set.

Our findings therefore confirm the overall scalability of our
proposed re-organization heuristic based on brood sorting.

IV. PREVIOUS AND RELATED WORK

An example for the application of ACO to distributed
systems was the AntNet concept, which uses ACO to solve the
routing problem in packet-switched communication networks.
Virtual ants are used to find routes to each popular network
nodes. They move through the network following pheromone
deposits from previous ant movements until they have arrived
at their destination node. From there, they retrace their path
back to their original node and deposit pheromones for their
destination on the way. Here, ACO was lifted onto a new
level: A set of computers (nodes) connected bilaterally using
network technology was set to be the simulated landscape,
and simulated ants are able to pass through the connections
present between nodes. In AntNet, pheromone deposits are
then used to create a probabilistic distance-vector routing
table, to efficiently route data packets to their destination
nodes- The system was able to match the performance of state-
of-the art routing algorithms in extensive simulations. [6].

For distributed storage, Gelernter has proposed the Linda
Tuple Space coordination model [9]. This model provides
an abstraction of the possible operations necessary on a
coordination medium. Here, tuples can be stored and retrieved
from an opaque tuple space. However, the question how the
Linda operations could be distributed onto multiple networked
nodes in a scalable way sparked further research.

Jiang et al. proposed the DTuples concept, where a global-
law-based Distributed Hash Table coordinates distributed
operations [10]. However, the problems of unfair data
distribution and load mentioned in Section II-B also appear
here. A similar concept was used by Busi, Montresor and
Zavattaro in PeerSpaces, where P2P technology is used to
connect tuple spaces. However, they have discarded the data
location transparency inherent in Linda by allowing the user
to include the location information in user requests [11].

Menezes and Tolksdorf introduced the SwarmLinda con-
cept, where ACO is used to locate data items in a distributed
storage system. Virtual pheromone paths are laid by suc-
cessful retrieval operations to assist future operations [12].
They continued in exploring the dimensions of adaptivity in
such a system. The issue of the proper location of data was
discussed on the common producer-consumer problem.

Viroli and Casadei have chosen another nature-inspired
algorithm for their approach on providing a coordination
model using simulated biochemical processes [13]. However,
system performance is based on setting “chemical rules” and
“reaction rates”, which requires a manual interaction.

Triple spaces for the storage of Semantic Web data encoded
as Resource Description Framework (RDF) triples are a

specialization of the very generic concept of a tuple space.
Simperl, Krummenacher and Nixon proposed such a triple
space as part of the TripCom project [14]. Here, the Linda
principles were adapted to provide triple storage and retrieval
from the space infrastructure. The data location transparency
is again reduced with the possibility of specifying a concrete
node from which tuples are to be retrieved.

Semantic Web scalability requirements led to a need for
a large-scale distributed RDF triple store. Since storage
of RDF triples can be considered a special case of the
Linda triple space model, the adaption of SwarmLinda for
RDF storage was a logical next step. The RDFSwarms
concept by Tolksdorf and Augustin first used ACO algorithms
for fully distributed RDF data storage and retrieval [15].
Building on top of RDFSwarms, the Self-Organized Semantic
Storage Service (S4) extended the RDFSwarm concepts with
triple and pheromone aggregation and provided a large-
scale evaluation results confirming the feasibility of this
concept [2].

V. CONCLUSION AND FUTURE WORK

We have introduced Ant Colony Optimization (ACO) as
the simulation of the behaviour of ants coordinated through
the use of virtual volatile pheromones. Through simplicity,
dynamism, and locality, ant colonies are able to converge on
global optima while taking strictly local decisions, enabling
scalability of the concept.

We described oour distributed storage system, which
achieves scalability by using ACO-inspired algorithms to
locate and place data items within a network of connected
computers (“nodes”). We have further detailed our notion
of a routing key, which describes a defining property of
the stored data items later to be used in retrieval. We
have used the routing key to describe distinct pheromone
values. By pointing out the differences between distribution
techniques based on global laws and swarm-based approaches,
the location of data items emerged to be a variable and
data reorganization as a possible solution to the issues of
“unfair” data and load distribution. While many forms of data
location algorithms are conceivable, we have contributed a
concrete approach using a simple heuristic, where each host
periodically generates a storage profile for the local persistent
storage. This profile is then compared to the local profile on
other nodes on a trip through the storage network, merging
matching buckets together. The process was expected to
converge on an stable number of buckets, improving the data
distribution without requiring any global law.

Our evaluation was to show both the convergence as well as
the scalability of our movement heuristic. We have observed
four main results of our evaluation of the self-organized
storage location optimization heuristic: The heuristic was
able to perform well under network configurations ranging
from 10 to 100 nodes, the amount of movement operations
converged for every network size and for both data sets, and



the amount of buckets versus their average size matched
our expectations. We therefore deem our storage location
reorganization heuristic to be fit for usage in our and similar
distributed storage systems and see no further issues impeding
the scalability of our distributed storage system.

A. Future Work
The support for data items with more than one routing

key is an area of further research. For example, should data
items be tagged with a geographic location, queries for data
items tagged with a particular position should be supported.
This would provoke multiple levels of pheromone paths,
and raise questions about trade-offs between indexing and
reorganization efforts against their possible benefits. The
means of processing queries including one or multiple of
these indices are so far unknown for systems of this type.
Also, our evaluation was limited to 100 storage nodes due
to availability constraints. However, to further increase the
confidence in our approach, we would like to run evaluations
on far more nodes, possibly using cloud services.

Acknowledgments
This research has been partially supported by the “DigiPo-

lis” project funded by the German Federal Ministry of Educa-
tion and Research (BMBF) under grant number 03WKP07B.

REFERENCES

[1] A. Kaltenbrunner, V. Gómez, and V. López, “Description
and prediction of slashdot activity,” in Fifth Latin
American Web Congress (LA-Web 2007), 31 October
- 2 November 2007, Santiago de Chile, V. A. F.
Almeida and R. A. Baeza-Yates, Eds. IEEE Computer
Society, 2007, pp. 57–66. [Online]. Available: http:
//doi.ieeecomputersociety.org/10.1109/LA-WEB.2007.59

[2] H. Mühleisen, A. Augustin, T. Walther, M. Harasic,
K. Teymourian, and R. Tolksdorf, “A self-organized semantic
storage service,” in Proceedings of the 12th International
Conference on Information Integration and Web-based
Applications and Services, ser. iiWAS ’10. New York,
NY, USA: ACM, 2010, pp. 357–364. [Online]. Available:
http://doi.acm.org/10.1145/1967486.1967542

[3] T. Stützle and M. Dorigo, “A short convergence proof for a
class of ant colony optimization algorithms,” IEEE-EC, vol. 6,
pp. 358–365, Aug. 2002.

[4] M. Dorigo and T. Stützle, Ant Colony Optimization. Cam-
bridge, Massachusetts: The MIT Press, 2004.

[5] R. W. Floyd, “Nondeterministic algorithms,” Journal of the
ACM, vol. 14, no. 4, pp. 636–644, Oct. 1967.

[6] G. D. Caro and M. Dorigo, “Antnet: Distributed stigmergetic
control for communications networks,” J. Artif. Intell. Res.
(JAIR), vol. 9, pp. 317–365, 1998. [Online]. Available:
http://dx.doi.org/10.1613/jair.530

[7] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelli-
gence: From Natural to Artificial Systems. Oxford: Oxford
University Press, 1999.

[8] J. Handl and B. Meyer, “Ant-based and swarm-based
clustering,” Swarm Intelligence, vol. 1, no. 2, pp. 95–
113, 2007. [Online]. Available: http://dx.doi.org/10.1007/
s11721-007-0008-7

[9] D. Gelernter, “Generative communication in Linda,” ACM
Transactions on Programming Languages and Systems, vol. 7,
pp. 80–112, 1985.

[10] Y. Jiang, G. Xue, Z. Jia, and J. You, “DTuples:
A distributed hash table based tuple space service
for distributed coordination,” in GCC. IEEE Computer
Society, 2006, pp. 101–106. [Online]. Available: http:
//doi.ieeecomputersociety.org/10.1109/GCC.2006.41

[11] N. Busi, A. Montresor, and G. Zavattaro, “Data-driven
coordination in peer-to-peer information systems,” Int. J.
Cooperative Inf. Syst, vol. 13, no. 1, pp. 63–89, 2004. [Online].
Available: http://dx.doi.org/10.1142/S0218843004000894

[12] R. Menezes and R. Tolksdorf, “A new approach to scalable
linda-systems based on swarms,” in Proceedings of ACM SAC
2003, 2003, pp. 375–379.

[13] M. Viroli and M. Casadei, “Biochemical tuple spaces for
self-organising coordination,” in Coordination Models and
Languages, 11th International Conference, COORDINATION
2009, Lisboa, Portugal, June 9-12, 2009. Proceedings,
ser. Lecture Notes in Computer Science, J. Field and
V. T. Vasconcelos, Eds., vol. 5521. Springer, 2009,
pp. 143–162. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-02053-7

[14] E. P. B. Simperl, R. Krummenacher, and L. J. B. Nixon,
“A coordination model for triplespace computing,” in
Coordination Models and Languages, 9th International
Conference, COORDINATION 2007, Paphos, Cyprus, June
6-8, 2007, Proceedings, ser. Lecture Notes in Computer
Science, A. L. Murphy and J. Vitek, Eds., vol. 4467.
Springer, 2007, pp. 1–18. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-540-72794-1 1

[15] R. Tolksdorf and A. Augustin, “Selforganisation in a storage
for semantic information,” Journal of Software, vol. 4, no. 8,
pp. 798–807, 2009.


