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ABSTRACT

Column Imprints is a pre-filtering secondary index for answering
range queries. The main feature of imprints is that they are light-
weight and are based on compressed bit-vectors, one per cacheline,
that quickly determine if the values in that cacheline satisfy the
predicates of a query. The main overhead of the imprints imple-
mentation is the many sequential value comparisons against the
boundaries of a virtual equi-height histogram. Similarly, during
query scans, many sequential value comparisons are performed to
identify false positives. In this paper, we speed-up the process of
imprints creation and querying by using advanced vectorization
techniques. We also experimentally explore the benefits of stretch-
ing imprints to larger bit-vector sizes and blocks of data, using
256-bit SIMD registers. Our findings are very promising for both
imprints and for future index design research that would employ
advanced vectorization techniques and larger (up to 512-bit) and
more (from 16 now to 32) SIMD registers.
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1 INTRODUCTION

Column Imprints [7] is a secondary index for answering range
queries in a read optimized columnar database. Imprints are pre-
filtering bit-vectors that quickly determine if a cache line or block
of data contains values that satisfy the range predicates of a query.
They have been designed such that they are easy to build, typically
as a side effect of the first range-scan query, and then subsequently
used by all other queries. The imprints index structure is simple
and lightweight, never exceeding 12% of the original size of the
column, while speeding up significantly query execution times.
Column Imprints are particularly useful for those attributes that
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are on the tail of a relational table, not worth the investment of
building a primary (sort/cluster) index, yet often part of the many
range predicates of a query.

Column Imprints are so efficient because they are built during
a single sequential scan, where each value is compared against a
number of boundaries of an equi-height histogram, in order to set
the corresponding bit on a small bit-vector. An imprint is typically
only 64-bits and stored as an unsigned long. Similarly, during query
time, one sequential scan is needed over the imprints to quickly
determine which blocks of data qualify for query evaluation. Even
with such short description of the creation and usage of imprints, it
is easy to assume that a vectorized programming framework with
native CPU support will greatly benefit the performance of the
index.

In this paper we make use of Intel’s Advanced Vector Extensions
[5] to speed up Column Imprints. SIMD instructions are used i) to
efficiently compare multiple values against histogram boundaries,
ii) to perform multiple bit-wise operations over imprints that ex-
tend beyond the standard 64-bit unsigned long words, and iii) to
filter out false positive values at query time. These three points are
the main computation intensive parts of the creation and query
process of the index, and are exactly the ones that should be opti-
mized by vectorization. As we will describe in detail in the next
section, Column Imprints also employ compression techniques and
dictionary-style bookkeeping, but these parts of the code are less
often invoked and have many control-flow branching making them
unsuited for SIMD optimization.

The scalar design of imprints is constrained by two important
factors. First, the size of the imprint per cache line can not exceed
64-bits in order to achieve word alignment for the CPU registers.
A larger imprint will break the bit-wise operations into more than
one registers and thus the process will become significant slower.
Second, each imprint encodes the values that fit in one cacheline,
which typically is 64 bytes. The choice of one 64-bit imprint per
cacheline is optimal, because it allows for a cache conscious imple-
mentation that avoids loading entire cachelines into L1 CPU cache
memory if the pre-filtering stage determines not to. A data block
larger than a cacheline will perform worse because of i) higher false
positive ratios since it will set more bits in the limited 64-bit vector,
ii) less than optimal data loading/streaming in the CPU cache, and
iii) more cacheline lookup misses.

The aforementioned limitations can be easily overcome with
the use of SIMD registers that extend beyond the 64-bit limit, to
128-bits, or 256-bits, or even (in the very near future) to 512-bits.
With bigger imprint bit-vector sizes, more values can be encoded
and thus bigger than a cacheline data blocks can be fetched with
SIMD stream loading. In addition, loading data into multiple SIMD
registers (16 registers currently, but soon to be increased to 32)
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allows for value comparisons in higher rates and bigger data blocks.
In this work we investigate this potential by extending imprints up
to 256-bits, and data blocks to 256 bytes.

The Instruction Set Extensions Programming Reference [5] states
that “Intel AVX is designed to support 512 [...] bits in the future.
In accordance to that statement, the newer 2016 version of the
manual [1] describes the new instruction sets for AVX-512 and lists
future CPUs that will support it, including the Xeon Phi 2 which
is already available. The AVX-512 instruction set has been long
awaited, and many research in database engines design concludes
with future work on 512-bit long registers [2]. We also anticipate
this new hardware, and we are planning to extend imprints to use
512-bit vectors and 512 byte blocks per imprint.

Apart from the designing the SIMD version of the scalar im-
plementation of Column Imprints, we also explore the research
question of how good imprints scale with larger bit-vectors and
data blocks. Given that we only have at our disposal a CPU with the
AVX2 256-bit instruction set, we performed extensive experiments
up to the 256-bit mark, and used our findings to project in the near
future of the AVX-512 instruction set.

To recap, in this paper we make the following contributions:

e We investigate how modern wide vectorized instructions
can improve performance of lightweight indexing struc-
tures such as Column Imprints.

e We present a SIMD enabled re-implementation of the scalar
code of Column Imprints based on Intel’s Advanced Vector
Extensions (AVX2). The implementation is available as
Open Source through a GitHub repository !.

e We perform an extensive experimental evaluation of our
implementation on a modern processor and project our
finding to the upcoming AVX-512.

We conclude our work with few thoughts on how we should
design native SIMD indexes as opposed to adapting existing in-
dexes to a vectorized version. A new line of research might be in
sight, where vectorization is not an added benefit on top of a scalar
implementation, but a design choice of the index itself. Extending
this thought to other hardware accelerators, such as FPGAs, instead
of trying to integrate them as a side component, we should aim for
a seamless native support inside the database engine.

The remainder of this paper is structured as follows. In Section 2
we give an overview of the main design concepts behind the Column
Imprints index. We continue with explaining the vectorized version
of imprint construction and querying (Section 3). Then, Section 4
presents experimental results of a prototype implementation on
thousands of data columns. Finally, Section 6 discusses results,
research outlook, and future work.

2 COLUMN IMPRINTS

A Column Imprintsindex is a cache conscious secondary pre-filtering
structure suitable for both low and high cardinality columns. The
main purpose is to quickly identify which blocks of data do not
store values that satisfy a range predicate, and thus prevent those
blocks from being fetched into the CPU cache for further value
comparisons. The index consist of three main components, a col-
lection of small bit-vectors, called imprints, a dictionary that aligns

!https://github.com/lsidir/imprints
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Figure 1: A Column Imprint Index

compressed imprints with the corresponding data blocks, and an
array of boundaries that partitions the value space of the indexed
column into equi-height bins (i.e., an equi-height histogram of the
values distribution).

Figure 1 gives an overview of the index structures. Given a
column with values from domain D, an imprint index is constructed
by first taking a small sample to approximate a histogram of a few
(typically 64 or less) equal-height bins. These bins are used to derive
the boundaries b; to be used to mark the range each bit in the imprint
covers (top part of Figure 1). The entire column is then scanned,
and for every cacheline of data, a bit-vector is created. The bits in
each bit-vector correspond to the bins of the histogram. A bit is set
if at least one value in the cacheline falls into the corresponding bin.
The resulting bit-vector is an imprint of the current cacheline that
describes which buckets of the approximated histogram the values
of the cacheline fall into. As shown in Figure 1, an imprint does not
have only one bit set per position, but as many bits as are needed
to map all distinct values of a cacheline. The collection of all the
resulting imprints form a unique Column Imprint. Consequently,
by examining the imprints of a column, the execution engine can
decide - in a cacheline granularity — which parts of the column data
are relevant to the query predicates, and only then fetch them for
further processing. Contrary to previous work, a column imprint
is a non-dense bit indexing scheme, i.e., only one bit is set for all
equal values in a cacheline, instead of the traditional approaches of
bitmaps where each data point is always mapped to a different bit.

To reduce the memory footprint of imprints, a simple but power-
ful compression scheme is used. Consecutive and identical imprints
are compressed together and annotated with a counter. The right
side of Figure 1 shows a small dictionary example. The count column
counts how many consecutive cachelines have unique imprints (i.e.,
one imprint per one cacheline), or how many consecutive cachelines
share the same imprint (i.e., one imprint per many cachelines). The
repeat column marks the one-to-one relationship between cache-
lines and imprints (repeat=0), or the many-to-one (repeat=1). This
compression exploits the empirical observation that data suitable
for secondary indexing exhibits, in the cacheline level, some degree
of clustering or partial ordering. Column imprints are designed
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Algorithm 1 Create Column Imprints

for each cacheline
for each value v in cacheline
i = find_bin (v)
set i-th bit in current imprint
if current imprint = previous imprint
compress and update dictionary

Algorithm 2 Query Column Imprints

set mask m for range query [low, high]
for each imprint imp
if imp & m) # 0
for each value v in cacheline
check if v € [low, high]

such that any clustering or partial ordering is naturally exploited
without the need for extra parameterization.

Algorithms 1 and 2 provide a high level overview of the process to
create and query imprints. The creation process is a single scan over
the data, where for all values in a cacheline the function find_bin
is invoked to determine which bit in the imprint has to be set.
This function call? is the time-dominant operation for Algorithm 1.
Function find_bin performs 64 comparisons of the form v > b;
and it is exactly the part of the code that will be vectorized in the
next section.

Similarly, for the query Algorithm 2, the process starts by scan-
ning each imprint i and comparing it with a mask bit-vector m.
Mask m has all bits that fall between the query range [low, high]
set, i.e, m[i] = 1if low < b; < high. If imprint imp and mask
m have common bits set, then the cacheline has to be examined
further for qualifying values and for rejecting false positives. This
operation, denoted as check if in Algorithm 2 is the most time
consuming part of querying, and it will be the subject of speeding
up through vectorization in the next section.

For a complete presentation of Column Imprints and a detailed
explanation of each algorithm we refer the reader to [7].

3 VECTORIZED COLUMN IMPRINTS

For completeness of the presentation in this paper, we include
the time dominant code snippets of the scalar implementation of
the imprints algorithms, as identified in the previous section and
described in details in [7]. This work is about substituting these
critical snippets of code in the imprints creation and querying
algorithms in order to enable advanced vectorization optimizations.

3.1 Imprints Creation

The performance-critical part of imprints creation is the histogram
bin assignment for each value from the column data, i.e., the code
for find_bin function. Especially for wide imprints, it seems intu-
itive to implement a non-recursive binary search in the histogram
boundary array b[ ] to determine the correct bin i, such that v > b;
and v < bj;1. However, the large amount of branching required

Zimplemented as a macro to avoid function call overhead costs
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Figure 2: SIMD registers for imprints creation

makes this solution slower than a “brute-force” approach, where all
boundaries b; are checked against the input value, regardless the
outcome, and all comparison results are summed up. The result is
the bin index of the respective value v. The following pseudo-code
illustrates this approach:

int res = 0;
for (int i; i < length(b); i++)
res += v > b[i];

Vectorization of this approach is straightforward, depending on
the input value type width (8, 16, 32 or 64 bits), we can ask the CPU
to perform many (up to 64 for AVX-512) value-to-bin boundaries
comparisons in a single SIMD instruction. This works because
AVX comparison operators, for example _mm256_cmpgt_epi32, will
return a vector where each element is set to —1 for each of the
comparisons that evaluate to “true”. These result vectors can then
be summed up to yield the bin boundary index.

To illustrate this method, consider the following example. We
assume 256-bit SIMD instructions, 32-bit integer input values, 4-bit
imprints, and 8 values per imprint. The histogram boundaries b;
in this example are by = 12, by = 23, bp = 51 and b3 = 70. In
a preparatory step, we compute SIMD vectors for all boundaries
where all vector entries are set to the boundary value b; and store
them in an array of vectors, denoted with B. We use uppercase
variable names for SIMD vectors. This was found to be faster than
creating the boundary vector B ad-hoc, at the expense of some ad-
ditional memory use. Figure 2 shows the four boundaries b; stored
in the four SIMD registers B[0] to B[3], and the fifth SIMD register
V that contains the 8 values of the data block (cacheline) to be
compared. The values in V will be compared simultaneously, using
SIMD instructions, with one boundary value at a time. Therefore,
the vectorized bin boundary index computation proceeds as follows
in four steps (SIMD comparisons):



DaMoN’17, May 15, 2017, Chicago, IL, USA

RES 00 0 0 0 0 0 0
14 13 82 66 15 80 60 68 21
RES+=(V>B[O]) | -1 -1 -1 -1 -1 -1 -1 -1
RES+=(V>B[1]) | -1 -2 -2 -1 -2 -2 -2 -1
RES+=(V>B[2]) | -1 -3 -3 -1 -3 -3 -3 -1
RES+=(V>B[3]) | -1 4 -3 -1 -4 -3 -3 -1
RES=0—RES | 1 4 3 1 4 3 3 1

B W N =

The subsequent step is to extract the individual entries from RES
and look up the bit pattern for that particular histogram bin. All
retrieved bit patterns are OR-ed together, creating the final imprint
for a particular data block. In this example, the four-bit imprint
would be 1101, since no entries fall into the second histogram bin.
Furthermore, the resulting imprint needs to be checked against the
imprint of the previous block of input values. This post-processing
is not particularly performance-critical and we only use SIMD
instructions for imprints that are larger than 64 bits, as we will
explain later in this section in more details. This example is also
simplified, usually more than eight values would be represented by
an imprint. In this case, the imprint is the logical OR of the results
of several runs of the described method.

Note that the bin boundaries for eight input values are deter-
mined using only 9 SIMD instructions. Using the sequential method
described above, 64 individual comparison instructions would have
been required to achieve the same result. As vector width increases
over time, this ratio increases further. However, we have found
that the performance of the bin index computation can be further
increased by comparing the values against two (and not more) his-
togram boundaries in each iteration. The following code snippet
shows this optimization. For each iteration along the boundaries
array B, V is compared (cmpgt) with two boundary vectors and the
outcome is added together, and then added to the total result. We
suspect this to be due to the lack of a data dependency within the
first two steps of calculation in this version. Intel’s Haswell, Broad-
well, and Skylake architectures can execute at most two 256-bit
SIMD instructions per cycle, which suggests a two-stage pipeline
for those instructions. Hence, by removing the data dependency,
we can get at most two instructions completed per cycle. Analysis
of performance counters confirmed that the code here reached this
maximum. As we will see in the experimental results, the speedup
of roughly 15x over the scalar code can probably be traced to this
effect and implementation.

The following code snippet shows this optimization for 32-bit
integer input values.

__m256i RES = _mm256_setzero_si256();
for (int il1=0, i2=1;
i1 < length(B)-1; i1+=2, i2+=2)
RES = _mm256_add_epi32(RES,
_mm256_add_epi32(
_mm256_cmpgt_epi32(V, BL[ill]),
_mm256_cmpgt_epi32(V, B[i21)));

One limitation of this approach is that the number of histogram
bin boundaries (and hence imprint length) is limited by the type of
the input values. This is because a vectorized comparison operators
returns comparison results of the same size in turn. If V is of type
char, then we use _mm256_cmpgt_epi8 to compare the values to
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Figure 3: SIMD registers for imprints querying

boundaries, hence we can address at most 127 when we accumulate
comparison results in RES. As a result, we cannot create 256-bit
imprints for 8-bit values. This is not a big issue since it does not
make a lot of sense to create 256 bins for at most 256 distinct values,
unless we are aiming at a one-to-one bitmap indexing structure.

3.2 Imprints Querying

Querying the vectorized imprints is very similar to the scalar ver-
sion with two exceptions. The comparison of both outer and inner
range boundary bit masks with the imprint entries uses vectorized
instructions instead of simple bitwise logic operations. This is done
to support larger than 64-bit imprints. There are three possible
outcomes of this comparison. First, the data values represented
by the imprint has no overlap with the query range. In this case,
the querying process simply advances to the next imprint. Second,
there might be a match with only the bits of the mask that are
inclusively entirely inside the range query, in which case all values
represented by the imprint satisfy the query predicate without fur-
ther checking. The interesting third case is when there is a partial
overlap with the mask, which means that individual data values
need to be compared with the range boundaries in order to deter-
mine which values satisfy the range query predicates. Here, SIMD
operations are used to compare multiple values with the upper and
lower query range boundaries. This comparison can be done in one
instruction.

Consider the same value array V as in the example of the previous
section. Also consider the range query Q = [15,49]. The mask
of this range query will be 0110 since Qj,,, = 15 is larger than
by = 12 and Qp;4p = 49 is smaller than b3 = 70. The mask 0110
has common bits set with the imprint of V which was 1101, thus
the values of V have to be examined one by one. Figure 3 shows
the two SIMD registers that store the Qj,,, and Qp;g4p, predicates of
the range query. Similarly, the next SIMD register holds the values
of V that will be compared with Qj,, and Qp;gp, in one go, using
vectorization.

The following code snippet shows the SIMD version of compar-
ing imprints with the query mask Q_MASK and checking the values
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against the low Q_LOW and high Q_HIGH ends of the query range
for false positives.

if (_mm256_testz_si256 (Q_MASK, IMPRINT)
for (all values V in a data block)
RES = _mm256_movemask_epi8(
_mm256_sub_epi32(
_mm256_cmpgt_epi32(V, Q_LOW),
_mm256_cmpgt_epi32(V, Q_HIGH)));

The RES variable has set the bits that correspond to the values
of V that satisfy the comparison with the low and high of the range
query. It is straightforward afterwards to identify the qualifying
values from the RES bit pattern.

3.3 Larger Imprints

Lastly, in order to support imprints larger than a 64-bit long word,
we changed the type of an imprint from unsigned long to a
_-mm2561i. Therefore, the bitwise operations had to be substituted
with SIMD instruction calls, such as _-mm256_or_si256 for OR, and
_mm256_xor_si256 for XOR.

Probably more interesting is the following code to check if two
imprints have exactly the same bits set.

__m2561i imprintl;
__m256i imprint2;
check = _mm256_xor_si256(imprint1,imprint2);
if (_mm256_testz_si256 (check, check))
# imprint1 is identical to imprint2

The function _-mm256_testz_si256 will return true if all bits
in check are 0, but in order for this to happen imprint1 and
imprint2 have to have all bits set exactly the same. Similarly,
_mm256_testz_si256 function is used during the query process to
check if an imprint has common bits set with the query mask, where
the mask is also an __mm2561i type. We refer the reader to our code
repository! for further details about our implementation.

The changes presented in this section, from the scalar code to
supporting SIMD instructions, accounts for a speedup up to 16
times. In the next section we evaluate these changes, and examine
the benefits of using more histogram bins, i.e., wider imprints,
together with larger than a cacheline data blocks.

4 EXPERIMENTS

To evaluate the performance of the vectorized version of imprints,
we used a subset of the collection of datasets as in the original
paper of Column Imprints [7]. The data sets consist of 6,476 different
columns, with a maximum number of records of 600 millions, and
contain integer and decimal types of various length. For a detailed
overview of the data sets we refer the reader to [7]. The dataset
used for experiments is available on request.

We created a stand-alone implementation of SIMD imprints,
which is available for download'. We compared our SIMD-enabled
version of imprints with the original scalar implementation of im-
prints.

We are interested in mainly investigating the impact of two
parameters. First, the bit width of the imprint (number of bins).
Note that wider imprints require more comparisons during index
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creation, thus we expected to have a slowdown as the number of
bins increase, but always to be many times faster than the equivalent
scalar version. The benefit of using larger bit-vectors for imprints
is that the false positive ratio is reduced, thus having to check less
values during query time. The second parameter we investigate is
the number of encoded values per imprint, or in other words, the
size of the block of data. This parameter will have an influence over
the precision of the imprints. More values per block can lead to
a smaller index size, but can lead to a negative impact on query
performance, as more individual values need to be checked for false
positives. In our experiments, we vary the imprint size between 8
and 256 bits and the input block size (number of input values times
their individual length) between 64 and 256 bytes. Other aspects
of the imprints, such as the size and the compression percentage
does not change with the SIMD-enabled version, so we do not
repeat these experiments. Note that the compression percentage
has a fixed upper limit, and it is always the ratio between the size
of an imprint over the size of the data block. For each imprint
configuration on each data column, we evaluate ten queries with
even-spaced selectivity between 0% and 100%.

All experiments were run on an Intel Core 17-6770HQ (“Skylake-
H”) CPU clocked at 2.60 GHz. The system contained 32 GB of main
memory. We also ensured that the files read are in the page cache
before imprint creation.

All plots below show the average imprint creation or query time
per 1,000 values over all data sets (and queries). In addition, the
standard error is indicated as error bars. For creation, “values”
refers to input data values, for querying, it refers to imprint index
entries. This is done to allow a fair comparison between data sets
of different sizes and different characteristics. For example, since
the imprints index collapses subsequent equal imprint entries using
dictionary encoding, the data distribution has a direct impact on
the scanning effort. In extreme cases (a single constant value for
the entire column), a single imprint entry can represent billions of
data values. Hence this normalization.

4.1 Imprint Creation

We expect that the imprint size has a direct impact on index creation
time, since every bit that is added requires additional comparison
operations. However, we also expect that the SIMD implementation
described in this work will significantly outperform the optimized
scalar implementation. In the experiments in this section, we have
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varied the imprint size for both implementations in order to study
these expectations.

Figure 4 shows the outcome of this experiment. The scalar base-
line and the SIMD implementation are shown as different lines. We
can see how the time required to create imprints for 1,000 values
scales linearly to the amount of bins and hence imprint size. We
can also see how the SIMD version greatly outperforms the scalar
version, with the largest possible imprint size of 256-bits taking
about as much time as the scalar code for 16-bit imprints. For the
64-bit imprints, the scalar code required on average 120 us per 1,000
values, while the SIMD implementation took only 4 us with very
low variance.

Drilling down, we further expect that the input type width has a
significant impact on vectorized imprint creation time. For example,
for input data values of type int16_t, 16 values can be boundary-
checked in one SIMD instruction, while for int64_t values only 4
comparisons are possible in a single instruction. Figure 5 shows
the imprint creation timing results (for the SIMD implementation
only) by input data type width. As expected, we can see how data
with 8 bytes input type width leads to the longest imprint creation
time, while the 2 bytes data is fastest. For 256-bit imprints, the 2
bytes values took on average of 5.3 us per 1,000 values, while the 8
bytes type width took 38.5 ps.

Turning towards the second parameter, the amount of input data
values per imprint entry, we expect that fewer values per imprint
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will improve creation time since fewer imprint candidates need to
be created and compared with the previous entry for dictionary
compression purposes. For this experiment, we have varied the
number of input values per imprint between 8 and 128 in such a
way that the input block size (the amount of input values multiplied
by their type length) ranges between 64 and 256. Figure 6 shows
the results of this experiment. We can see how indeed the imprint
creation time drops significantly if more data is encoded into a
single value. However, a larger block size will also lead to reduced
precision, which has an adverse effect on query run time, which
we will investigate next.

4.2 Imprint Querying

Querying performance is a trade-off between to extremes. On the
one end, the imprint index is empty, requiring a full scan of the
data values. On the other end, the imprint index is a one-to-one
(bit-)mapping of the data. While both are technically valid, we are
searching for a more balanced trade-off. This trade-off is controlled
by imprint length and block size.

We expect that larger block sizes will decrease query perfor-
mance (as more entropy is lost), but it is unclear by how much.
Figure 7 plots the time required to process 1,000 imprint index en-
tries against increasing block sizes. Two lines are shown, one for 8-
and one for 256-bits imprint length. We see that query performance
indeed decreases as block size is increased, but (on average) at most
linearly. It is very likely that query performance will degrade for
even larger block sizes, certainly if data values have to be fetched
from disk.

In the original imprints paper, a 8-to-1 relationship between data
value bits and (before duplicate elimination) imprint bits was found
to work best. When scaling this up to larger imprints, we expect
this relationship to still hold. Figure 8 shows a rather complex
behavior of the queries. However, the basic assumption that a 8-to-
1 relationship between data and index still holds. For the 64 bytes
block size, we observe good performance for an imprint size of 64-
bits. For the 256 bytes blocks, 256-bits imprints size showed the best
performance, which confirms our expectations. A similar result
was found for the (not plotted) 128 byte block size with 128-bits
imprints.
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Figure 8: Imprint querying time for different amounts of
values encoded (SIMD Only).

Overall, we argue that the experimental results show good scal-
ability of imprint indexes thanks to the availability of vectorized
instructions.

5 RELATED WORK

There has been a large amount of previous work related to using
SIMD vectorization to speed up analytical data management tasks.
Early papers demonstrated how existing implementations of re-
lational operators could be sped up using SIMD instructions [9].
Generally speaking, systems that use columnar or (data-)vectorized
storage models can benefit from a straightforward translation from
scalar code implementing relational operators to the equivalent
vectorized code.

A more thorough operator redesign was shown to be required to
to fully take advantage of vectorized instructions [6]. The authors
used selective load and store and scatter/gather operations available
in modern SIMD instruction sets as building blocks for new scan
and join operators. Experimental results show that for example
for low selectivity, vectorized code can provide an approximately
10 times throughput improvement in scans. Overall, the authors
found that vectorization favors cache-conscious algorithms and
that the speedup provided by vectorization is independent of other
optimizations.

A paper comparing sort and hash join algorithms [2] already
reported the observation that sort-based join algorithms scale near-
linearly with the SIMD width. The paper also predicted that sort-
based join algorithms are expected to show better performance than
hash-based approaches with a SIMD width of 512-bits or higher.
This shows the relevance of the increased vector widths that are
now becoming available.

Data layout adaption is a third option apart from the previously
discussed operator re-implementation and algorithmic redesign.
One paper proposes to adapt in-memory data layout in such a way
that it is amenable to SIMD processing [4]. In such layout, every
SIMD word contains bits from a large amount of data values, which
allows early pruning of data blocks in selections based on prefix
comparisons or improved look-up performance.

The overall research progression in transforming scalar code to
vectorized could be described by the following chart with represen-
tative references.
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Operator Re-Implementation with SIMD Instructions  [9]

l
SIMD-Aware Algorithm Design [6]
l
SIMD-Aware Data Layout Adaption [4]

6 CONCLUSION & RESEARCH OUTLOOK

In this paper we have demonstrated that by substituting the expen-
sive scalar code snippets of column imprints with the equivalent
single-instruction multiple-data code snippets, we can achieve a
speed up of almost 16 times. The exercise of finding the equivalent
SIMD version is an interesting one, and requires some work to
identify the correct code snippets to be changed. SIMD instruc-
tions benefit from continues sequential loading, while control flow
branching has to be avoided always. These observations makes the
job more challenging, and can lead to different index design choices.
For example, we plan to investigate the possibility of dropping alto-
gether the compression features of Column Imprints (which require
some if-else statement) in favor of non-interrupting sequential loads
(i.e., memory streaming) and bulk bit-wise comparisons.

looking for false positives, thus splitting the process of uninter-
rupted bulk operations and conditional branching.

Another important aspect of our work is the expansion from
64-bit word registers to the equivalent 256-bit SIMD registers, and
therefore the increase of the imprints width. The, soon to come,
AVX-512 which will support 32 512-bit SIMD registers will allow
for even more performance boost for imprints.

However, the interesting observation is that not only Column
Imprints but other bit-vector based techniques can benefit from
SIMD instructions. We believe that there is interesting work to be
done here, and we intend to extend this work to other techniques
such as WAH bitmap compression [8].

Another promising direction to speed up querying is to pre-
compute all possible result offset vectors similar to [3]. For exam-
ple, if the values (1,5, 6, 3) are checked for the range query [2, 5],
only the second and last entry are true positives. For this case, the
pre-computed vector (NULL, 0,NULL, 1) can be looked up, and then
add the base index for this block of values, say 42, using vectorized
instructions, thus we have efficiently created the output candidate
list (NULL, 42,NULL,43). AVX has a feature to control which ele-
ments from a SIMD register should be copied into contiguous main
memory, making final assembly of the result efficient as well.

A final thought on research outlook is that, although now we
are successfully trying to adjust existing index structures to the
SIMD era, we should start designing new indexes that have na-
tive support for vectorization. Complex compression, multiple
branching, and other structures that aimed at loading less data
in the CPU might be abandoned for the use of SIMD instructions
such as _.mm256_stream_load_si256 that allow stream loading with
non-temporal memory hints. The benefits of such bulk loads may
overweight the benefits of less data transfer through control flow
statements.
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